Model | .Stel |
Genus | Properties |
Pages with Diagram |
Pages with Description | Notes |
SpaceFilling=K3T3B4 | .Stel | 0 | (R)(A)(D) | 235 | | lattice arrangent of atoms |
Start of rhombus-faced convex polyhedra - models are referred to as R' instead of R if they contain rhombuses of unit edge length and two 60 degree angles. |
rh=Y3Y4 | .Stel | 0 | (R')(A)(D) | 237 | | Frh=2, F3=3, F4=1, F=5 |
rh=Y32S3 | .Stel | 0 | (R')(A)(D) | 237 | | Frh=6, F=6 |
rh=P32 | .Stel | 0 | (R')(A)(D) | 237 | | Frh=2, F4=4, F=6 |
rh=Y3S3 | .Stel | 0 | (R')(A)(D) | 237 | | Frh=3, F3=4, F=7 |
rh=(Q3)T3 | .Stel | 0 | (R')(A)(D) | 237 | | Frh=3, F3=2, F4=3, F6=3, F=11 |
rh=Y42B4 | .Stel | 0 | (R')(A)(D) | 237 | | Frh=8, F4=4, F=12 |
rh=Y4B4 | .Stel | 0 | (R')(A)(D) | 237 | | Frh=4, F3=4, F4=5, F=13 |
rh=Y5R5 | .Stel | 0 | (R')(A)(D) | 237 | | Frh=5, F3=5, F5=5, F10=1, F=16 |
rh=Q4T4 | .Stel | 0 | (R')(A)(D) | 237 | | Frh=4, F3=4, F4=5, F8=5, F=18 |
rh=(Q42)T4 | .Stel | 0 | (R')(A)(D) | 237 | | Frh=8, F4=10, F8=4, F=22 |
rh=Y5R5Q5 | .Stel | 0 | (R')(A)(D) | 237 | | Frh=5, F3=10, F4=5, F5=6, F=26 |
rh=Y53B5 | .Stel | 0 | (R')(A)(D) | 237 | | Frh=15, F3=5, F5=9, F=29 |
rh=pY52B5 | .Stel | 0 | (R')(A)(D) | 237 | | Frh=10, F3=10, F5=10, F=30 |
rh=mY52B5 | .Stel | 0 | (R')(A)(D) | 237 | | Frh=10, F3=10, F5=10, F=30 |
rh=Y52R52 | .Stel | 0 | (R')(A)(D) | 237 | | Frh=10, F3=10, F5=10, F=30 |
rh=Y5B5 | .Stel | 0 | (R')(A)(D) | 237 | | Frh=5, F3=15, F5=11, F=31 |
rh=Y52R5 | .Stel | 0 | (R')(A)(D) | 237 | | Frh=5, F3=15, F5=11, F=31 |
rh=(Q5)T5 | .Stel | 0 | (R')(A)(D) | 237 | | Frh=5, F3=15, F4=5, F5=1, F10=11, F=37 |
rh=p(Q52)T5 | .Stel | 0 | (R')(A)(D) | 237 | | Frh=10, F3=10, F4=10, F5=2, F10=10, F=42 |
rh=m(Q52)T5 | .Stel | 0 | (R')(A)(D) | 237 | | Frh=10, F3=10, F4=10, F5=2, F10=10, F=42 |
rh=(Q53)T5 | .Stel | 0 | (R')(A)(D) | 237 | | Frh=15, F3=5, F4=15, F5=3, F10=9, F=47 |
rh=(Q4)T4 / Q4(P4)Q4 | .Stel | 1 | (R')(A)(Q)(T)(D) | 237 | | toroid with (R') |
rh=(Q5)T5 / sQ5S5(D5) | .Stel | 10 | (R')(A)(Q)(T)(D) | 237 | | here s=11 |
rh=Y4-4(Q4)T4 / Q4P4Q4 | .Stel | 1 | (R)(A)(Q)(D) | | 237 | aplanarity restored with excavations - not Q'' |
Start of Greek-cross-faced polyhedra - models are referred to as R+ instead of R if they contain Greek crosses of unit edge length in addition to the regular faces. |
gc=5(P4) | .Stel | 0 | (R+)(A)(D) | | 238 | F+=2, F4=12, F=14 |
gc=2(Y4)_4(Q3) | .Stel | 0 | (R+)(A)(D) | | 238 | F+=1, F3=8, F4=1, F6=4, F=14 |
gc=3(P6)_3(P3) | .Stel | 0 | (R+)(A)(D) | | 238 | F+=3, F3=6, F4=6, F6=2, F=17 |
gc=19(P4) | .Stel | 0 | (R+)(A)(D) | | 238 | F+=6, F4=24, F=30 |
gc=8(Q3)_K3 | .Stel | 0 | (R+)(A)(D) | | 238 | F+=6, F3=32, F=38 |
gc=8(Q3)_K3-S3_S3_(S3)_S3_S3 | .Stel | 1 | (R+)(A)(D) | | 238 | F+=6, F3=60, F=66 |
gc=2(Y4)_4(Q3)_5(P4)_2(Y4)_4(Q3) | .Stel | | (R)(A)(Q) | | 238 | not Q'' |
Császár | .Stel | 1 | (A)(D) | 246 | 240, 244-246 | 14 tri. faces, 7 vertices |
Szilassi | .Stel | 1 | (A)(D) | 247-249 | 240, 244-245 | 7 hex. faces, 14 vertices |
Prev - Chapter 19 - Tables of Altitudes
Back to Adventures Among the Toroids - Index
Disclaimer:
These pages are dedicated to B.M. Stewart. They are intended to be used by readers of his book to better illustrate his ideas in three dimensions. His book has tons of information that I do not intend to represent here, and I highly encourage anyone interested in this subject to buy the book. If you like my illustrations, please let me know. And if you are interested in a particular Stewart Toroid being modeled, please let me know and I will do what I can.
Thanks also to Robert Webb for his very cool "Stella" program. I have used it extensively to generate VRML files for my site. It is a great tool for rapid exploration of augmentations and excavations of polyhedra (among other things).
Back to the main Polyhedron Page.
Link to this page as http://Polyhedra.Doskey.com/Stewart20.html
|